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Abstract

A novel procedure for solving three-dimensional problems for elastic layer weakened by through-thickness tunnel
cracks has been developed and is presented in this paper. This procedure reduces the given boundary value problem to
an infinite system of one-dimensional singular integral equations and is based on a system of homogeneous solutions for
a layer. Integral representations of single- and double-layer potentials are used for metaharmonic and harmonic
functions entering in the singular integral equations. These representations provide a continuous extendibility of the
stress vector while allowing a jump in the displacement vector in the transition through the cut.

Expanding the potential and biharmonic solutions in the Fourier series over the thickness coordinate yields the
integral representations of the displacement vector and stress tensor. The problem of reducing a denumerable set of the
integral equations of the given boundary value problem to one-to-one correspondence with the set of unknown densities
appearing in the Fourier’s coefficient representations has been settled efficiently. Numerical investigations show a rapid
convergence of the proposed reduction procedure as applied to the solution of the infinite system of one-dimensional
integral equations. Numerical examples illustrate the proposed method and demonstrate its advantages.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Significant progress in the classical problems of the theory of elasticity for a finite cylinder in R? has been
made in the last few years because of: more accurate stress analysis of machines, structures, etc., the as-
sessment of their strength and durability regarding various stress raisers. The efficient homogeneous so-
lutions method (HSM), developed by Lur’ye (1942), for three-dimensional problems involving a cylinder
(thick plate), was generally employed for stress analysis in circular cylinders. However, it can be extended to
other problems in elasticity. In this paper, the HSM is applied to more complicated cases, particularly to a
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layer weakened by a finite number of through tunnel cuts or cavities. Notice that another approach, the
eigen-vector functions method was employed by Grinchenko and Ulitko (1970) for the solution of Kirsch’s
problem for a layer.

In recent years, the finite element method (FEM) has generally been the most employed method for
stress analysis in cylinders with cracks. In particular, FEM was applied to the solution of thick plates in
tension weakened by a through-thickness rectangular crack (Yamamoto and Sumi, 1978). An interesting
interpretation of the HSM in terms of the FEM as applied to the bending deformation of a thick plate with
a through-thickness rectangular crack was given by Sundara Raja Iyengar et al. (1988). This reference
reviews some investigations related to the above-mentioned problem. Some asymptotic versions of the
HSM were given for the solution of multiply connected boundary value problems by Aksentyan and
Vorovich (1963) and Kosmodamianskii and Shaldurvan (1978).

A special feature of the present investigation lies in the fact that the one-dimensional singular integral
equations, or more precisely, an infinite system of such equations, are invoked for the solution of the three-
dimensional boundary value problem for a cylinder. Our numerical investigations showed that a solution of
the above system by the reduction method converges rapidly over the range of the variation in the thickness
coordinate in the skew-symmetric case (bending of a layer). This convergence occurs everywhere in the
layer except for areas that are adjacent to its bases in the symmetric case (stretching of the layer). Thus, the
proposed procedure decreases the problem dimensionality by a factor of two. In the neighborhood of
the base (for the symmetric case) the obtained solution needs some sharpening associated with taking the
stiffener singularity into account. This issue is not discussed in this paper, but the experimental investigation
of the above phenomenon was given by Villareal et al. (1975).

2. A stretching of a layer with a tunnel crack

In the coordinate system Oxix,X;, consider an elastic layer |¥;| <A, X3 = hx; and —oo < x1, x; < 00,
weakened by the tunnel through-thickness cuts-cavities (see Fig. 1). The cross sections of the latter rep-
resent some smooth open arcs L; (j =1,2,...,N). Let the layer bases be free of forces and allow some
loading X' (X' = —X~ =X,,n=1,2,3) to be applied on the cavity surfaces. Let a homogeneous field of a
stretching and shearing (o;;) take place on infinity. It will be also assumed that the curvatures of the arcs

Fig. 1. The layer with tunnel stress raisers.
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and functions X, satisfy Holder’s condition on L; for any X; € [—h,h]. In addition, the functions
X, = X,({,%;), { € L=|JL; are expended into Fourier’s series over the coordinate x; on [—1,1].

We will proceed from the homogeneous solutions introduced by Lur’ye (1942). They can be represented
in the following complex form:

Biharmonic solution

F F
— i, = —2h<a 61), us = —h* (o — 1)x;V0,

Oz
OF
2
o = 2,uhV F, o,= 8,Uh 02’ 03 = 07 (21)
h? 1 202
F=(30—1)§D+3(0’_1) g_xs Vip, ViV =

OIF, = —0F = 20V%p.

Rotational solution

. . =0
u; — lur, = 4ioh E % cosp,x3, u3=>0,
zZ
m=1

. >, 9?
c1=0, o0,= —161,uahz a@z’” cos p,x3, 033 =0,
VA

(2.2)
= _4llu'o-zpm oz * sin Pm*3;
Py = T, Tm = pm/h? (v - A))m)(pm =0.
Potential solution
. 0 - =
U —iup = 2h§ReZo¢k(x3)lpk, Uy = Rez,uk()g)tpk,
=1
2 o0
= %ReZﬂkm)zp,ﬁ oy = —8,uh—ReZock X3y,
=1
0 - 2uc
03 = 4,u0'a—ReZ Ke(x3)W,, o3 = TReZ Ve (03) Wy,
R =1
(2.3)

OCk(X3) = <5 — O'Tk) COS 0;X3 — 0X31; Sin 5kX3,
k

Bi(x3) = ((20 — 1)d4t — 05;7;) COS 333 — GS,x3t; sin 343,

Ki(x3) = Ok (T 81N Ogx3 — X38, COS Opx3),  y(x3) = 20, (ov3) — o4 (x3),
vi(x3) = (Suti + 0371) COS 3x3 + X35, sin Syxs,

t, =sind;, 71, =cosd;, Red, >0, Imod, >0,

di=0k/hy (VP =2, =0,

1
zZ=X —‘ri)Cz, X3 :h)C3, 6/622 (61 —iaz), 6/6225(61 +laz>7 6,«:6/6)@7

1

2
1 . .

=1-2v)7, o1=0u+0n, 02=0n—o0+20cn, o03=03—1i02;.
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In the relationships (2.1)—(2.3), the values u,, and ¢,, are components of the displacement vector and stress
tensor, respectively; u and v are the shear modulus and Poisson’s ratio, respectively; J; are roots of the
equation sin 29, + 20, = 0 lying in the first quadrant of the complex J-plane.

The integral representations of functions entering into the relationships (2.1)—(2.3) must provide the
existence of jumps in the displacements and a continuity of the stress vector in the transition through L;
(Gj=1,2,...,N)as well as a decay in the displacements and stresses on an infinity. So, it is necessary to add
the value (o;;) to the components of the stress tensor ;;. Let us construct below such representations that
will be correct in the above-mentioned sense.

Assume

o) =Re [ (p05 +r©576)ac+ [T 6as

Ale) = ~doRe [ p(0)|n* = -1~ 2t

L

V() = /L e (OKo(ar) ds + /L ( W(0) azKO(W)dH 02 Ko(w)dg) (2.4)

o¢
() = / 4, (OKo(y,r) ds + 2Re / ru(OKo(yr) L,

G=r21n%7 r={—z, (=(+ihel, Imgi(()=0.

Here Ky(z) is the McDonald function of zero order; the functions p({) = {p;({),{ € L;},...,r.({) =
{rm;j(0),( € L;} are to be determined from the boundary conditions on the surfaces of non-homogeneities.

The next step of the solution is the reduction of the given boundary value problem to a system of one-
dimensional singular integral equations. To complete this step it is necessary to bring a denumerable set of
unknown functions appearing in Egs. (2.1)—(2.3) to one-to-one correspondence with the denumerable set of
the integral equations. Some version of the above problem was considered in the variational formulation
by Aksentyan and Vorovich (1963). In this paper, we will formulate the problem by focusing other con-
siderations. As a result of the analytical procedure introduced below, all the unknown functions are ex-
pressed through some physical values of jumps in the displacement vector on a cut.

From the realization of the above-mentioned procedure, we can expand all the even components of the
displacement vector, stress tensor, and external loading into Fourier’s series of the type u = >_ u™ cos p,,x3
and all the odd components into the series of the type v = >_ v sin p,x;. In determining Fourier’s co-
efﬁcwnts olj ) of the stress tensor components through the functions (2.4), some singularities of the type
(¢ —z) will appear. In order to remove the above singularities, we will introduce the following relations
between the densities appearing in the representations (2.4):

40305 =3 (A0 + A0,
pa

(2.5)

8(—1)"(c — 1)1

m2m?

p(0) — 4ior,(0) =

NgE

(4”20 + 2" 510)).

=~
I

where oc,(c”’) are Fourier’s coefficients of the function o (x;) in the orthogonal system {cosp,x3} on the in-

terval [—1, 1].
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Represent the boundary conditions on L in the following form:

, + , +
{agm) — ez”pa(zm)} = 426V {Xl(m) — 1X2(m>} (m=0,1,...),

Re{e (o) b =2 (07)" =120,

(m

where o), ) and X,f’”) are the Fourier’s coefficients of the functions ¢; and X, respectively, in the system
{cos p,,x3}; the upper sign refers to the left shore of the cut in moving from the vertex a; to b;; Y is the angle
between the normal to the left shore and the x;-axis (Fig. 1).

The continuity conditions for the stress vector in the transition through the cut (it is sufficient in this case
to satisfy the boundary equalities (2.6) on only one of the cut shores) and requirements of an existence of a
jump in the displacement vector on L will yield to the following relationships:

(2.6)

ul™ Re > oV, (¢ U 4+ ip©
a0 =-1) g -Relnmal@ -, VR LUD
4rch 4(1 —30) 8nah 2.7
e i 0 e O 7 S A ) '
ds p - ds o " 20m3m? ’
00 m)
Re> o g, = [Z‘" h] (m=1,2,...),
o) " (2.8)
Re>- k" qi =0,
=1
X (m . 2h w0 —1 -
Rezali )(pk +pk> = W (U( ) *7(*1)( )U<0>>,
=1
o () (2.9)
D s U™ (m=1,2,...),
Imi/l(’”) (pk —p*) _ _L (m)  qm) _ ﬂ
=k k wmie O F m’
[uw)} ho 1) (2.10)
X (m « 3 g — m
Im};ﬂi (o —pp) = e (D)"Y O (m=1,2,..).

Here ", u™, and u(" are the Fourier’s coefficients of the displacement 3 and the normal and tangential
displacement components on L (in the x; Ox,-plane), respectively.

Thus, the densities g7, p({), and r,,({) are directly expressed via jumps in the displacements on the cuts.
The remaining densities are related to the corresponding jumps by means of three couples of infinite sys-
tems of the linear algebraic equations (2.8)—(2.10).

Introducing the representations

1 & .
() = 3 Z%‘ ],
=

2h & 1 . o—1 q;; .
* = Y (=Y U© LAy g (0)
Pr T Dy 2 ;:l {ij n ( 1) 20 + 20 )
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() ;
LT h Do I —1Yh(e—1
pk—pk:;Z SV + 8, [j]—( Ll )y (2.11)
J=1

7o j2 7o j2 ’

we will obtain instead of Egs. (2.8)—(2.10) the following “‘standard” infinite systems:

ReX:la/(fankj = 5’”] (m7] = 1a2a c ')7
k=

N (2.12)
ReZKf{m)qkj =0,
=1

Rezal({m)q]t] =0 (m7]: 1727"')3
= (2.13)

> A"S; = =6, (mj=1,2,...),
= (2.14)

Imy_ "8y = 0,
k=1

MY A"S;, =0 (mj=12,...),
=1 (2.15)

ImZﬂim)Slg = 5mja
k=1

where the values gy, Gij> Skjs and S;; are to be determined; 6,,; is the Kronecker’s symbol.
Let us go into Eq. (2.12) in a more detail. Multiplying the first system by cos p,,x; and the second one by
sin p,,x; and summing the results over m, yields:

qu,-(ock(x3) - oc,(co)) = fi, qujkk()@) =0, f;=2cospxs. (2.16)
k=1 k=1

The pair oy (x3) and g, (x3) is solutions of the following (not self-conjugate) boundary value problem:

) (x63) + (14 0)07(x3) + o1 (x3) = O,
(1 + o) (xs) + 02y (x) + 6034, (x3) = O, (2.17)
A (£1) 4+ 1 (£1) =0, (06— 1)dou(£1) + (6 + gl (£1) = 0.

Using the above relationships, one can reduce the functional equations (2.16) to the following equivalent

form:

qujyk(XS) = - fj”(xa)7 ZijézYk(XS) =
=1 g+1 =

8a
o+ 1

1), (2.18)

where the functions Y, (x;) are non-trivial solutions of the following boundary value problem:

Y 4200+ 5{Y = 0, Yi(£1) = Y/(£1) =0, (2.19)
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Hence, expressions (2.18) represent the expansions of their right-hand sides into Fourier’s series for the
eigen-functions of problem (2.19). By employing the orthogonality condition (Grinberg, 1953) here, we
obtain:

1
/ {2¥/Y) — (6; + 0.) VY bdxs =0 (m # k),
-1

and using the developed equations in the above-mentioned reference procedure, one can obtain Fourier’s
coefficients gy; (k,j =1,2,...), as follows:

-1

20_52 ! /! : )
i [15 (x3m(x3)dx3“1 (v 5;yk)dx3]

Calculating the integrals on the right-hand side of the above equation, we will obtain

qrj =

4 j25;
(O' + 1)(lkj‘fk)2

Similarly, we can obtain the solutions of the “standard” systems (2.13)—(2.15), as follows:

1)1+1 5 ( 272 52), S = 1(2‘7‘]kj + Tc]ij)v Skj = 1qk;- (2.21)
(ZjTe)

c+1F
Thus, a solvability of the infinite systems of equations (2.12)—(2.15) has been established. The closed-
form solutions are obtained by Egs. (2.20) and (2.21). Moreover, all the densities in integral representations
(2.4) are expressed through the physical values, namely, through the jumps in the “displacements” on L.
Eq. (2.11) can be significantly simplified by substituting the coefficients from (2.20) and (2.21) into the
above equations and then by summing up some series. As a result, we will obtain:

G = (—1y"! . lLy=0; — pjz,, Tx = COS . (2.20)

qlﬁj = (-

S
*7(pk+p,( O +i Z 2 yw,
no . . Sii O = i
~ (o= i) = i _Z]__;Vm _TZTJ{% } (2.22)
Jj= Jj=
2(c — 1)n?

(o + 1)5?1,%'

Notice that representations (2.4) also remain valid for the second basic problem also, for instance, in the
presence of a rigid insertion in the cut. However, in this case the densities will be expressed via some jumps
in the stress vector on L.

2.1. The integral equations of the boundary value problem (2.6)

The integral representations for stresses g;; can be obtained by substituting for functions in relationships
(2.1)-(2.3) from Eq. (2.4) into the above relationships. Expanding the obtained expressions into the
Fourier’s series in the coordinate x3;, we will determine the integral representations of Fourier’s coefficients
of_;"). Satisfying the boundary conditions (2.6) on one of the shores L and taking Eqs. (2.5), (2.7), (2.11) and
(2.22) into consideration, we will obtain an infinite system of one-dimensional singular integro-differential
equations of the first kind. Because of its awkwardness, the above system is not given here.
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The structure of the system is such that all unknowns are involved in its regular part; the characteristic
part of the system contains exactly three functions [u™ |, [u™ ], [u{" | for any fixed m = 1,2,..., and two
functions (4% | and (4| for m = 0.

The jumps in displacements vanish at the vertices of arcs ;, therefore the above-obtained system should
be considered together with the following additional conditions:

/(UW+JWW%K:O,L/dV@J:Q j=1,2,...,N, m=0,1,... (2.23)
Lj Lj
The functions U™, V™ and dLué’")J /ds are found in the class hy (Muskhelishvili, 1958).

Consider a characteristic part of the above-mentioned system in a detail. For simplicity, assume that the
contour L represents a segment x, = 0, —/ <x; < /. Then, we obtain:

form=20
I d[u(zo) + iugo)}
/—————f:%wm —l<x <1 (2.24)
—1 X — Xo
form=1,2,...
I d[u(zm)}
/ :Nm(XO), -l <xy<l, (225)
;] X—Xo
I
dx .
[ om0 T = Nl (G=1,2), (2.26)
— X — X
where

ol = i i, oo =Tt = ] ]

The functions N, (x), N;,(x) € H[—1,1] are assumed to be known. Eqgs. (2.24) and (2.25) are solvable, their
solutions are fixed by additional conditions of the type (2.23). By replacing

o = g [ onn =g ]

the remaining system (2.26) is easily reduced to the standard form (Muskhelishvili, 1958 and Parton and
Perlin, 1973):

! 1
/ a)lmdx 4o / lIl
- m
-1 X = X0 —1
! w2mdx !
— =7, w1, In
-1 X —Xo —1

where the kernels in the second terms on the left-hand sides are regular. Thus, the characteristic part of the
obtained system is solvable in the class 4 for any fixed m =0, 1, ...

I—XO

dx:Nlm(xo) (m:l,2,...),

X — Xo

l—xo

dX = N2m<x0)>
X — X

2.2. The stress intensity factors

Introduce parametrization of the contour L; (from here on, the index j will be dropped) { = {(9),
lo = (), —=1< 9, dp < 1. Accordingly to that we will set:
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o) =—2 O =, &0 s'<5):%>o

SOV1-8 ds  g(5)vV/1-0"

where functions Q‘ff”)(é) € H[—1,1] are the solutions of the obtained system of integral equations for the
boundary value problem.

Using the above expressions and the relations connecting the densities in the integral representations
(2.4) with jumps in the displacements, as well as Eqgs. (2.1)—(2.3), we will find after a detailed asymptotic
analysis of the integral representations for the stresses the following:

, / i{ — il (:I:l)} COS m7x3,
K = *%1/
o

where a,, 0,, and 7,3 are the normal and shear stresses on a plane beyond the crack tip (the upper sign
corresponds to the origin of the crack “«’’). Thus, the stress intensity factors are naturally expressed
through the functions:

Kl _iKlI =

q

)sinmnxy, Ky =V2mre,, Ky=V2ure,, Kn=V21ro,s,

Mg

i [ua(ny.%)L

U= gl - Sl 5

ds

d 1
14 :a[m(ﬁ,m)] +;[un(C,X3)], ((=a;Ubj,xs € [—1,1]).

2.3. Some numerical results

For example, consider a layer weakened by a tunnel parabolic cut & = p;d, & = pd* (=1 <5< 1)
subjected to homogeneous stress field (o;;) on infinity. Some load X, (n = 1,2, 3) can be applied on the cut
surface.

In the numerical implementation of the algorithm, the system of integral equations was reduced to the
system of linear algebraic equations by the mechanical quadrature method (see Erdogan et al. (1973)) to the
N.th approx1mat10n In the zero approximation, two integral equations are retained, and correspondingly,
two densities Lul )| and Lu2 '|. Analyses were carried out for N, = 0, 1, 2, 3, 4 where the third approximation
did not contribute the results for the values K; and Kj; in the interval |x;| < 0.85. For the value of Kjyy faster
convergence in the interval |x;] < 1 was observed.

Let (o) #0, {o11) = {(61n) =X, =0 (n = 1,2,3). The diagrams of the distribution of the relative stress
intensity factor (K,) = K;/((d2,)v/nl) are given in Fig. 2 along the thickness coordinate for various p, and
h/1 (21 is the crack length). The top three diagrams refer to a straight crack (p, = 0) and the bottom-to a
parabolic crack (p, = 0.5). For p, = 1 these three curves are very close to one another and to the mark
(K7) = 0.2. Here and below, in the analysis, p; = 1 and v = 0.3 were taken.

Now let (a12) # 0, (611) = (022) = X, = 0. Notice that in this case, the value (Kj;) does not practically
depend on the coordinate x;. The values (Kj;) for a straight crack vary in the limits 1.020-1.013 and 1.030-
1.024 for /1 =2.5 and 1, respectively. For a parabolic crack, the values (Ky) for #/1 =0.5; 1; 2, 5 are
approximately equal. For p, = 0.5, (Ky;) = 0.47-0.48; for p, = 1, (Ky;) = 0.08-0.10. Consider one more case
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(&)
hjl =25
1.05
R \ |
— 0.5
|
, L L L 1
|
0.54 1 s
LV
0.52 N
/ ‘\05
0.50
0 0.5 X3

J

Fig. 2. Distribution of the relative stress intensity factor (K;) along the thickness coordinate x; for different 4/1.

<[<Ill>

hjl=25

/

Fig. 3. Distribution of the relative stress intensity factor (Ky;) along the thickness coordinate x; for different 4/1.

0 X3

when (o;;) = 0 and the shear forces X5 = )(3(1> sin 7x3, X; = X, = 0 on the crack surface. The diagrams of the
value (Kyyp) = KIH(X;”\/HIY1 are shown in Fig. 3.

3. Bending of a layer with a tunnel crack

Now consider a problem of the bending of a layer. It should be noted that a contact of crack surfaces is
not taken into account here because it is assumed that the layer was subjected to stretching prior to
bending. Thus the contact is lacking in this case. Let the homogeneous field of bending and twisting stresses
(0;;) takes place on infinity. In order to describe the state of stress and strain of the above layer we will
apply the homogeneous solutions developed by Lur’ye (1942). We will present these solutions in the fol-
lowing complex form:
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Biharmonic solutions

Gl 1
—F, wus=—(c+1F —§h2x§(a— 1)V2F + 20h*V?F,

Oz
2 R 2
o1 =2u(36 — )hx;V°F, 033,=0, 0,=—4u— 32 o3 = duch’ (1—x3)a V°F,

—il/lz =

F = 2(c + 1)hx;F — IPx3 (a+ )VZF V*V2F = 0.
Rotational solution

. . =< sin p,,x3 0@
Uy — Uy = 410’]12 —r 7"1, Uz = O,
% P Oz

o?
01 =0, 0, =—16iuch’ Z sin me3 sz’ o33 =0,

a3 = diuch Z % COS P, X3,
m=0 z

=Q2m+On/2, (V’=7,)0,=0, 7, =p,/h
Potential solution

uy —iup = 2h§ReZak(x3)¢k, Uy = —ReZuk(xg)lpk,
k=1 k=1

o0

2 . & RNy
o1 = %ReZﬁk(M)‘le Oy = _8"‘}1@1{62%(%)%"
=1

0 2uc
03 —4,uaa—Re E Ki(x3)¥y, o033 = /; Re E vy (03) ¥
=1

04 (X; (0lk + — > sin 5kX3 + 0ox37; COS 5kX3,
I(

1 + O')Tk — 0'51(1‘/(] COS (5kX3 + O'ékX';TA sin 5kX37

p(x3) =

Bi(x3) = 2(a — 1)ty sin dpx3 + dpec,

Vi (3) = (Opti — 5ktk) sin dyx3 — X35i1’k COS 03,
K (x3) = Ok (# cOS Opx3 — X374 SIN Ogx3),

th =sind,, Tt =cosd;, (VZP—IiDP, =0, A =0d/h

6395

Here, J; are roots of the equation sin 29; — 26; = 0 lying in the first quadrant of the complex J-plane.

The integral representations of the functions in the relationships (3.1)—(3.3) must ensure the existence of
displacement jumps and continuity of the stress vector in the transition through thecuts L; (j = 1,2, ...,

N)

as well as, the decay of displacements and stresses on infinity. The integral representations may be written

as following:

P =re [ (o050 +7(0 576 )t + [a0v6as+ [ q06as
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0a(2) = [ G OKalar)d5 + 2Re [ 1a(0) 5o Kalrr) (4

L ¢

e - [ (pk<c>§;1<o<zkr> AL+ 9i(0) s KaCir) dc) + [ ki as

N
G=r*lnr, L= ULJ" {—z=re", Img,=0, Imgq(()=Img ({)=0.

Here the functions p({) = {p;({),{ € L;},...,r({) = {rn;({),{ € L;} are to be determined from the
boundary conditions on the surface of the non-homogeneity.

As before, we expand all odd components of the displacement vector and stress tensor, as well as ex-
ternal loading in Fourler s series of the type u = > u'™ sin p,,x; and all the even components- in the series of
the type v = >_ v!™ cos p,,x3. In determining the Fourier’s coefﬁments o j’ of the components of the stress
tensor o;; by functions (3.4), the singularities of the type ({ —z)~ ? occur in the kernels of the corresponding
integral representations. In order to eliminate them, we introduce some relations between the densities
appearing in the representations (3.4).

o' = e =2 =Y~ (4" p(O) + 4P D)) (3.5)
k=1

where

2(~1)" 1
A =2(a + 1)hA,, Am:( ), g;,:h3(a+§)gm,

_1 m 2 4 2
. _6=D) (1__>7 o Aok

I o " P

are Fourier’s coefficients of the function o} (x3) in the orthogonal system {sinvy,x;}.

The boundary conditions on L have a form (2.6) for m = 0,1,2,... The continuity conditions of the
stress vector in the transition through the cut and the requirement of the existence of a jump in the dis-
placement vector on L result in the following relationships:

S (1 R )

o(]((m)

"= 47tlah 7]+ 271;0,,, v = efw/% ([] ilus”]): o

2 /d

A'Rep* — ¢ Rep — hReZock "o +pp) = Tt <d_ [“1 i|COSl,D+ { } smtﬁ) .
P 3.7

/"Rep — aRek;Kkm (o +p;) = Znhpm (; {u(l } cosy +— d { } sin w)

—A’Req+ ¢ g +hReZock q; = 4171 ([u(l } cosy + [ ] sin x//) s

— g+ aRerk q; =0;

=
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]+ (s i osv ).

2 x 1A dr
A,Imp — thm m» " (p = pj) = - (ds [u(l )} siny — - [u(z )} cos l//>;
k=1

® < (m . h
A Imp* — &' Imp — hImZoc,(C )(pk -p;) =
k=1 2mp

(3.9)

1 2
=20k (05— A,), A= , Am:2—1m(———>7
" ( ) P =D P P}

A =207+ AL, 87 = (30 — 1)hA,.

m

Here u (1 =1, 3) are the Fourier’s coefficients in the displacement vector u; (i = 1, 3).

Thus, the densities ¢! and r,, are directly expressed via the jumps in the displacements on the cuts. The
remaining densities are connected with the jumps by means of the three pairs of the infinite systems of linear
algebraic equations (3.7)—(3.9). Isolating the terms corresponding to the value m = 0 in relationships (3.7)—
(3.9), one can find the unknown densities, as follows:

¢ =10+ f: LuY, ¢q=-ruv9 4 i ruY,
=1 =1
p=ih ] = Ly - izoo: 1 ud] + i 19y,
= =
pr =il [ugo)] - 12 1Y) {u3 } + Z 19vo,
pe= e [l] = ' sz ] + Zz“ yo, (3.10)

pi=—ly [u<30>] 79+ Z 1) {Mgﬁ} n Z 7Y,
j=1

J=1

ot = —llk[u3 ] — 1,7 lek {ug } ZZO 7,
q; = ,]ZU(O) + Z lz(/') U(/),
=1

where U™ = [u™] cosy + [ul"] sin s, [u] = u™({) —u (C), { € L;.

The expressions for the coefficients for the displacement jumps are not given here because of their
awkwardness. These coeficients are expressed through the values g;; and g;,, which are the solutions of the
following “‘standard” systems:

Re};a,ﬁl)qzj = 5ij7 Rel;algl)qkj = 0,

= = (3.11)
RekZ:IK/(?qzj =0; Re,;’clg)% = 0y,
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where J;; (i,j = 1,2) is the Kronecker’s symbol. Thus, unknown densities are directly expressed via the
displacement jumps. The solvability of the infinite system of equations of the type (3.10) was proven in
Section 2.

3.1. The integral equations of the boundary volume problem

The integral representations for the stresses o;; can be obtained by substituting for the functions from
(3.4) into relationships (3.4). Expanding the obtained expressions into Fourier’s series in the x3;-coordinate,
one can determine the integral representations of the Fourier’s coefficients af-/'-"). Then, satisfying boundary
conditions (2.6) on one of the shores L and taking Egs. (3.5) and (3.6) into account yields an infinite system
of one-dimensional singular integro-differential equations of the first kind. The above system is not given
here because of its awkwardness. The system has been constructed in such a way that all the unknowns “are
11nked” 1n its regular part; the characteristic part of the system involves exactly three functions Lul J, Lu(z'”)J,
and Lu3 J for any fixed value m =0,1,2,.

The displacement jumps at the vertices of arcs L; vanish; therefore it is necessary to consider the obtained
system of equations together with the following additional conditions:

/d[u,?’”)} =0 (j=1,2,...,N, i=1,3, m=0,1,...), (3.12)
Lj

and to seek the functions d|u" | /ds in the class h, (Muskhelishvili, 1958). The solvability of the charac-
teristic part of the obtained system is established similarly to that of Section 2.

3.2. The coefficients of stress intensity

Let us introduce the parameterization of the contour L; (below the index ;j will again be omitted)
{=10(9), Lo ={4(9), =1 <0, 09 <1 similarly to that of Section 2. Corresponding to that, we will set:

o™ () = 4%(””)(5) =12, m=0,1,...)
P ez TR
doy”  Q"(5) sy _ ds

ds  g(3)WV1-8

where the function Q;”’)(é) € H[-1,1].

Using the above expressions, the relationships (3.6) and (3.9) connecting the densities in the integral
representations (3.4) with the displacement jumps and Egs. (3.1)—(3.3), we will find by the asymptotic
analysis the following integral representations for the stresses:

: _ Ho T - (m) - ~y(m) .
Ki —1Kn = 70.7_,’_1\/5,/(?1);7:0{91 (F1) — i, (ﬂFl)}Smpmm
/ m) 2m + 1
KIII E Q $1 COS PmX3y, Py = TTC7

K = V2nre,, Ky=V2nro,, Kumy=V2nro,;,

where g, g,, and o,3 are the normal and shear stresses on a plane beyond the crack tip; the upper sign refers
to the beginning of the crack a.
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3.3. Some numerical results

As an example, let us consider a layer weakened by a tunnel parabolic cut & = p,d, & = prd°
(—1<0<1) is subjected to a homogeneous field of bending stresses (o;;) applied on infinity. It is assumed
that some bending load X, ({,x3) (n = 1,2,3) can be applied on the cut surface.

In the numerical implementation of the algorithm, the system of integral equations was reduced to a
system of linear algebraic equations by the method of mechanical quadratures (Erdogan et al., 1973) and
was then solved by the reduction method. Approximation with the number N, refers to retaining 3gN* +1)
real equations in the system and correspondingly 3(N, + 1) unknowns |||, [«{" |, and [u{"| (m =
0,1,2,...,N,). At a zero approximation, the three integral equations were retained and, correspondingly,
so were the three densities Lu(lo)J, Lu(20>j, and Lugo)J. The calculations were carried out for N, =0, 1, 2, 3, 4,
where the third approximation did not correct the results in the interval |x;| < 1.

Let the load (6) = Px;, P = const acts on an infinity. The surfaces of the cavity-cut are free of any
forces. The diagrams of distribution of the relative stress coefficient factor (K,) = K, /(Pv/nl) over the
“thickness” coordinate are shown in Fig. 4. The curves 1, 2, 3, and 4 were constructed for a straight crack
(p1 =1, pp =0.5) for 1/1 =0.5; 1; 2; and 4 respectively, where 2/ is the crack length. Points on the above
figure refer to results given in Sundara Raja Iyengar et al. (1988) and were obtained by the FEM. It should
be noted that the results of the given investigation agree well with those of Sundara Raja Iyengar et al.
(1988). The straight line in Fig. 4 correspond to results of Murthy et al. (1981) obtained with the use of the
Reissner’s theory for 2/1 =1 .

Let the load X; = Px;cosy, X, = Pyssiny, X3 = 0, P = const, and (o;;) = 0 be applied on the surface of
the cavity-cut. The corresponding diagrams of the distribution of the relative stress intensity factor (K;)
over the “thickness” coordinate are given in Fig. 5. The curves 1, 2, 3, and 4 refer to a parabolic crack
(p1 =1 and p, = 0.5) for A/ = 0.5; 1; 2; and 4, respectively.

Consider a case when a load X; = X, = 0, X3 = P acts on the surface of the cavity of the cut. The di-
agrams of the distribution of the relative stress concentration factor (Ky) = K/ (P\/H) over the

1/2)3 4

0.5

0.0 0.5 <K>

Fig. 4. Distribution of the relative stress intensity factor (K;) for a rectilinear crack in bending.
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1234

X
3

0.5

0.0 0.4 <K|>

Fig. 5. Distribution of the relative stress intensity factor (K;) for a parabolic crack in bending.

X 1

0.5

0.0 0.6 <Km>

Fig. 6. Distribution of the relative stress intensity factor (Ky;) along the thickness coordinate x; for a rectilinear crack.

“thickness” coordinate are given in Figs. 6 and 7. The curves 1, 2, 3, and 4 (Fig. 6) were given for a straight
crack (p = 1 and p, = 0) for A/1 = 0.5; 1; 2; and 4, respectively. The curves 1, 2, 3, and 4 in Fig. 7 were
given for a parabolic crack (p; = 1 and p, = 0.5) for #/1 = 0.5; 1; 2; and 4, respectively.

All the numerical results were obtained for the value of Poisson’s ratio v = 0.3.
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Xy7 7
0.5
1 21 3] \4
0.0 0.6 <K >

jui

Fig. 7. Distribution of the relative stress intensity factor (Ky;) along the thickness coordinate x; for a parabolic crack.

4. Conclusion

A novel method has been developed and demonstrated for the stress analysis of the boundary value
problem of elastic layer weakened by through-thickness flaws. Several conclusions may be drawn about this
method:

(1) The use of homogeneous solutions reduces a three-dimensional boundary value problem for a layer to a
denumerable set of two-dimensional boundary value problems for metaharmonic functions.

(2) This approach enables an efficient solution of the problem of the correspondence of boundary condi-
tions for the stress vector on the flaw surface to boundary conditions for each metaharmonic function.

(3) By virtue of rapid convergence of the developed algorithms, it is sufficient to reduce the infinite system
of one-dimensional integral equations to a finite system with a quite small number of equations. The
latter practically decreases the problem dimensionality by two units. In this sense, the new approach
differs favorably from such well-known methods as the FEM and boundary element method.

(4) The disadvantages of this procedure lie in the awkwardness of analytical techniques used to obtain the
system of one-dimensional integral equations.
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