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Abstract

A novel procedure for solving three-dimensional problems for elastic layer weakened by through-thickness tunnel

cracks has been developed and is presented in this paper. This procedure reduces the given boundary value problem to

an infinite system of one-dimensional singular integral equations and is based on a system of homogeneous solutions for

a layer. Integral representations of single- and double-layer potentials are used for metaharmonic and harmonic

functions entering in the singular integral equations. These representations provide a continuous extendibility of the

stress vector while allowing a jump in the displacement vector in the transition through the cut.

Expanding the potential and biharmonic solutions in the Fourier series over the thickness coordinate yields the

integral representations of the displacement vector and stress tensor. The problem of reducing a denumerable set of the

integral equations of the given boundary value problem to one-to-one correspondence with the set of unknown densities

appearing in the Fourier�s coefficient representations has been settled efficiently. Numerical investigations show a rapid
convergence of the proposed reduction procedure as applied to the solution of the infinite system of one-dimensional

integral equations. Numerical examples illustrate the proposed method and demonstrate its advantages.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Significant progress in the classical problems of the theory of elasticity for a finite cylinder in R3 has been
made in the last few years because of: more accurate stress analysis of machines, structures, etc., the as-

sessment of their strength and durability regarding various stress raisers. The efficient homogeneous so-

lutions method (HSM), developed by Lur�ye (1942), for three-dimensional problems involving a cylinder
(thick plate), was generally employed for stress analysis in circular cylinders. However, it can be extended to

other problems in elasticity. In this paper, the HSM is applied to more complicated cases, particularly to a

International Journal of Solids and Structures 39 (2002) 6385–6402

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +1-814-863-0754; fax: +1-814-863-7967.

E-mail address: esvesm@engr.psu.edu (E.S. Ventsel).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00490-0

mail to: esvesm@engr.psu.edu


layer weakened by a finite number of through tunnel cuts or cavities. Notice that another approach, the

eigen-vector functions method was employed by Grinchenko and Ulitko (1970) for the solution of Kirsch�s
problem for a layer.

In recent years, the finite element method (FEM) has generally been the most employed method for
stress analysis in cylinders with cracks. In particular, FEM was applied to the solution of thick plates in

tension weakened by a through-thickness rectangular crack (Yamamoto and Sumi, 1978). An interesting

interpretation of the HSM in terms of the FEM as applied to the bending deformation of a thick plate with

a through-thickness rectangular crack was given by Sundara Raja Iyengar et al. (1988). This reference

reviews some investigations related to the above-mentioned problem. Some asymptotic versions of the

HSM were given for the solution of multiply connected boundary value problems by Aksentyan and

Vorovich (1963) and Kosmodamianskii and Shaldurvan (1978).

A special feature of the present investigation lies in the fact that the one-dimensional singular integral
equations, or more precisely, an infinite system of such equations, are invoked for the solution of the three-

dimensional boundary value problem for a cylinder. Our numerical investigations showed that a solution of

the above system by the reduction method converges rapidly over the range of the variation in the thickness

coordinate in the skew-symmetric case (bending of a layer). This convergence occurs everywhere in the

layer except for areas that are adjacent to its bases in the symmetric case (stretching of the layer). Thus, the

proposed procedure decreases the problem dimensionality by a factor of two. In the neighborhood of

the base (for the symmetric case) the obtained solution needs some sharpening associated with taking the

stiffener singularity into account. This issue is not discussed in this paper, but the experimental investigation
of the above phenomenon was given by Villareal et al. (1975).

2. A stretching of a layer with a tunnel crack

In the coordinate system Ox1x2�xx3, consider an elastic layer j�xx3j6 h, �xx3 ¼ hx3 and �1 < x1; x2 < 1,
weakened by the tunnel through-thickness cuts-cavities (see Fig. 1). The cross sections of the latter rep-

resent some smooth open arcs Lj (j ¼ 1; 2; . . . ;N ). Let the layer bases be free of forces and allow some

loading Xþ
n (X

þ
n ¼ �X�

n ¼ Xn; n ¼ 1; 2; 3) to be applied on the cavity surfaces. Let a homogeneous field of a
stretching and shearing hriji take place on infinity. It will be also assumed that the curvatures of the arcs

Fig. 1. The layer with tunnel stress raisers.
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and functions Xn satisfy H€oolder�s condition on Lj for any �xx3 2 ½�h; h
. In addition, the functions

Xn ¼ Xnðf;�xx3Þ, f 2 L ¼
S

Lj are expended into Fourier�s series over the coordinate x3 on ½�1; 1
.
We will proceed from the homogeneous solutions introduced by Lur�ye (1942). They can be represented

in the following complex form:

Biharmonic solution

u1 � iu2 ¼ �2h oF
oz

�
þ oF1

o�zz

�
; u3 ¼ �h2ðr � 1Þx3r2u;

r1 ¼ 2lhr2F ; r2 ¼ 8lh
o2F
oz2

; r3 ¼ 0;

F ¼ ð3r � 1Þu þ h2

2
ðr � 1Þ 1

3

�
� x23

�
r2u; r2r2u ¼ 0;

o22F1 ¼ �o21F1 ¼ 2rr2u:

ð2:1Þ

Rotational solution

u1 � iu2 ¼ 4irh
X1
m¼1

oum

oz
cos qmx3; u3 ¼ 0;

r1 ¼ 0; r2 ¼ �16ilrh
X1
m¼1

o2um

oz2
cos qmx3; r33 ¼ 0;

r3 ¼ �4ilr
X1
m¼1

qm
oum

oz
sin qmx3;

qm ¼ pm; cm ¼ qm=h; ðr2 � c2mÞum ¼ 0:

ð2:2Þ

Potential solution

u1 � iu2 ¼ 2h
o

oz
Re

X1
k¼1

akðx3Þwk; u3 ¼ Re
X1
k¼1

lkðx3Þwk;

r1 ¼
2l
h
Re

X1
k¼1

bkðx3Þwk; r2 ¼ �8lh
o2

oz2
Re

X1
k¼1

akðx3Þwk;

r3 ¼ 4lr
o

oz
Re

X1
k¼1

jkðx3Þwk; r33 ¼
2lr
h
Re

X1
k¼1

mkðx3Þwk;

akðx3Þ ¼
tk
dk

�
� rsk

�
cos dkx3 � rx3tk sin dkx3;

bkðx3Þ ¼ ð2r
�

� 1Þdktk � rd2ksk

�
cos dkx3 � rd2kx3tk sin dkx3;

jkðx3Þ ¼ dk sk sin dkx3ð � x3tk cos dkx3Þ; lkðx3Þ ¼ 2rjkðx3Þ � akðx3Þ;
mkðx3Þ ¼ dktk

�
þ d2ksk

�
cos dkx3 þ x3d

2
ktk sin dkx3;

tk ¼ sin dk; sk ¼ cos dk; Redk > 0; Imdk > 0;

kk ¼ dk=h; r2
�

� k2k
�
wk ¼ 0;

ð2:3Þ

z ¼ x1 þ ix2; �xx3 ¼ hx3; o=oz ¼ 1

2
ðo1 � io2Þ; o=o�zz ¼ 1

2
ðo1 þ io2Þ; oi ¼ o=oxi;

r ¼ ð1� 2mÞ�1; r1 ¼ r11 þ r22; r2 ¼ r22 � r11 þ 2ir12; r3 ¼ r13 � ir23:
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In the relationships (2.1)–(2.3), the values um and rm are components of the displacement vector and stress

tensor, respectively; l and m are the shear modulus and Poisson�s ratio, respectively; dk are roots of the

equation sin 2dk þ 2dk ¼ 0 lying in the first quadrant of the complex d-plane.
The integral representations of functions entering into the relationships (2.1)–(2.3) must provide the

existence of jumps in the displacements and a continuity of the stress vector in the transition through Lj

(j ¼ 1; 2; . . . ;N ) as well as a decay in the displacements and stresses on an infinity. So, it is necessary to add
the value hriji to the components of the stress tensor rij. Let us construct below such representations that

will be correct in the above-mentioned sense.

Assume

uðzÞ ¼ Re

Z
L

pðfÞ oG
of

�
þ p�ðfÞ o

of
r2G

�
df þ

Z
L
qðfÞr2Gds;

F1ðzÞ ¼ �4rRe
Z

L
pðfÞ ln

f � z
h

�
� 1

	
ðf � zÞdf;

wkðzÞ ¼
Z

L
qkðfÞK0ðkkrÞds þ

Z
L

pkðfÞ
o

of
K0ðkkrÞdf

�
þ p�

kðfÞ
o

of
K0ðkkrÞd�ff

�
;

umðzÞ ¼
Z

L
q�

mðfÞK0ðcmrÞds þ 2Re
Z

L
rmðfÞK0ðcmrÞdf;

G ¼ r2 ln
r
h
; r ¼ jf � zj; f ¼ f1 þ if2 2 L; Imq�

mðfÞ ¼ 0:

ð2:4Þ

Here K0ðzÞ is the McDonald function of zero order; the functions pðfÞ ¼ fpjðfÞ; f 2 Ljg; . . . ; rmðfÞ ¼
frmjðfÞ; f 2 Ljg are to be determined from the boundary conditions on the surfaces of non-homogeneities.

The next step of the solution is the reduction of the given boundary value problem to a system of one-

dimensional singular integral equations. To complete this step it is necessary to bring a denumerable set of

unknown functions appearing in Eqs. (2.1)–(2.3) to one-to-one correspondence with the denumerable set of

the integral equations. Some version of the above problem was considered in the variational formulation

by Aksentyan and Vorovich (1963). In this paper, we will formulate the problem by focusing other con-
siderations. As a result of the analytical procedure introduced below, all the unknown functions are ex-

pressed through some physical values of jumps in the displacement vector on a cut.

From the realization of the above-mentioned procedure, we can expand all the even components of the

displacement vector, stress tensor, and external loading into Fourier�s series of the type u ¼
P

uðmÞ cos qmx3
and all the odd components into the series of the type v ¼

P
vðmÞ sin qmx3. In determining Fourier�s co-

efficients rðmÞ
ij of the stress tensor components through the functions (2.4), some singularities of the type

ðf � zÞ�3 will appear. In order to remove the above singularities, we will introduce the following relations
between the densities appearing in the representations (2.4):

4ð1� 3rÞp�ðfÞ ¼
X1
k¼1

að0Þ
k pkðfÞ

�
þ að0Þ

k p�
kðfÞ

�
;

8ð�1Þmðr � 1Þh2
p2m2

pðfÞ � 4irrmðfÞ ¼
X1
k¼1

aðmÞ
k pkðfÞ

�
þ aðmÞ

k p�kðfÞ
�
;

ð2:5Þ

where aðmÞ
k are Fourier�s coefficients of the function akðx3Þ in the orthogonal system fcos qmx3g on the in-

terval ½�1; 1
.
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Represent the boundary conditions on L in the following form:

rðmÞ
1

n
� e2iwrðmÞ

2

o�
¼ �2eiw X ðmÞ

1

n
� iX ðmÞ

2

o�
ðm ¼ 0; 1; . . .Þ;

Re eiw rðmÞ
3

� ��
� �

¼ � X ðmÞ
3

� ��
ðm ¼ 1; 2; . . .Þ;

ð2:6Þ

where rðmÞ
k and X ðmÞ

n are the Fourier�s coefficients of the functions rk and Xn, respectively, in the system

fcos qmx3g; the upper sign refers to the left shore of the cut in moving from the vertex aj to bj; w is the angle
between the normal to the left shore and the x1-axis (Fig. 1).
The continuity conditions for the stress vector in the transition through the cut (it is sufficient in this case

to satisfy the boundary equalities (2.6) on only one of the cut shores) and requirements of an existence of a
jump in the displacement vector on L will yield to the following relationships:

q�
mðfÞ ¼ �

uðmÞ
s

� �
4prh

; qðfÞ ¼ Re
P1

k¼1 að0Þ
k qkðfÞ

4ð1� 3rÞ ; pðfÞ ¼ �U ð0Þ þ iV ð0Þ

8prh
;

U ðmÞ ¼
d uðmÞ

n

� �
ds

�
uðmÞ

s

� �
q

; V ðmÞ ¼
d uðmÞ

s

� �
ds

þ
uðmÞ

n

� �
q

; rm ¼
ih U ðmÞ þ iV ðmÞ� �

2rp3m2
;

ð2:7Þ

Re
P1
k¼1

aðmÞ
k qk ¼

uðmÞ
n

� �
2ph

ðm ¼ 1; 2; . . .Þ;

Re
P1
k¼1

jðmÞ
k qk ¼ 0;

8>><
>>:

ð2:8Þ

Re
P1
k¼1

aðmÞ
k pk þ p�

k

� �
¼ 2h

p3m2
U ðmÞ � r � 1

2r
ð�1ÞðmÞU ð0Þ

� �
;

Re
P1
k¼1

jðmÞ
k ðpk þ p�

kÞ ¼ � h
p2mr

U ðmÞ ðm ¼ 1; 2; . . .Þ;

8>><
>>:

ð2:9Þ

Im
P1
k¼1

KðmÞ
k pk � p�k
� �

¼ � h
p3m2r

V ðmÞ; KðmÞ
k ¼ jðmÞ

k

pm
;

Im
P1
k¼1

lðmÞ
k ðpk � p�

kÞ ¼
uðmÞ
3

h i
p

� hðr � 1Þ
p2mr

ð�1ÞðmÞV ð0Þ ðm ¼ 1; 2; . . .Þ:

8>>>><
>>>>:

ð2:10Þ

Here uðmÞ
3 , uðmÞ

n , and uðmÞ
s are the Fourier�s coefficients of the displacement u3 and the normal and tangential

displacement components on L (in the x1Ox2-plane), respectively.
Thus, the densities q�

m, pðfÞ, and rmðfÞ are directly expressed via jumps in the displacements on the cuts.
The remaining densities are related to the corresponding jumps by means of three couples of infinite sys-
tems of the linear algebraic equations (2.8)–(2.10).

Introducing the representations

qkðfÞ ¼
1

2ph

X1
j¼1

qkj uðjÞ
n

� �
;

pk þ p�k ¼
2h
p2

X1
j¼1

qkj
1

pj2
U ðjÞ

��
� ð�1Þj r � 1

2r
U ð0Þ

�
þ

q�
kj

2rj
U ðjÞ

�
;
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pk � p�
k ¼

1

p2
X1
j¼1

h
prj2

SkjV ðjÞ

8<
: þ S�

kj

uðjÞ
3

h i
j

0
@ � ð�1Þjhðr � 1Þ

prj2
V ð0Þ

1
A
9=
;; ð2:11Þ

we will obtain instead of Eqs. (2.8)–(2.10) the following ‘‘standard’’ infinite systems:

Re
P1
k¼1

aðmÞ
k qkj ¼ dmj ðm; j ¼ 1; 2; . . .Þ;

Re
P1
k¼1

jðmÞ
k qkj ¼ 0;

8>><
>>:

ð2:12Þ

Re
P1
k¼1

aðmÞ
k q�

kj ¼ 0 ðm; j ¼ 1; 2; . . .Þ;

Re
P1
k¼1

jðmÞ
k q�

kj ¼ �dmj;

8>><
>>:

ð2:13Þ

Im
P1
k¼1

KðmÞ
k Skj ¼ �dmj ðm; j ¼ 1; 2; . . .Þ;

Im
P1
k¼1

lðmÞ
k Skj ¼ 0;

8>><
>>:

ð2:14Þ

Im
P1
k¼1

KðmÞ
k S�

kj ¼ 0 ðm; j ¼ 1; 2; . . .Þ;

Im
P1
k¼1

lðmÞ
k S�

kj ¼ dmj;

8>><
>>:

ð2:15Þ

where the values qkj, q�
kj, Skj, and S�

kj are to be determined; dmj is the Kronecker�s symbol.
Let us go into Eq. (2.12) in a more detail. Multiplying the first system by cos qmx3 and the second one by

sin qmx3 and summing the results over m, yields:

X1
k¼1

qkj akðx3Þ
�

� að0Þ
k

�
¼ fj;

X1
k¼1

qkjjkðx3Þ ¼ 0; fj ¼ 2 cos qjx3: ð2:16Þ

The pair akðx3Þ and lkðx3Þ is solutions of the following (not self-conjugate) boundary value problem:

a00
kðx3Þ þ ð1þ rÞd2kakðx3Þ þ rl0

kðx3Þ ¼ 0;

ð1þ rÞl00
kðx3Þ þ d2klkðx3Þ þ rd2ka

0
kðx3Þ ¼ 0;

a0
kð�1Þ þ lkð�1Þ ¼ 0; ðr � 1Þd2kakð�1Þ þ ðr þ 1Þl0

kð�1Þ ¼ 0:

ð2:17Þ

Using the above relationships, one can reduce the functional equations (2.16) to the following equivalent

form:

X1
k¼1

qkjYkðx3Þ ¼ � 4r
r þ 1 f 00

j ðx3Þ;
X1
k¼1

qkjd
2
kYkðx3Þ ¼

8r
r þ 1 f ð4Þ

j ðx3Þ; ð2:18Þ

where the functions Ykðx3Þ are non-trivial solutions of the following boundary value problem:

Y ð4Þ
k þ 2d2kY 00

k þ d4kYk ¼ 0; Ykð�1Þ ¼ Y 0
kð�1Þ ¼ 0: ð2:19Þ
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Hence, expressions (2.18) represent the expansions of their right-hand sides into Fourier�s series for the
eigen-functions of problem (2.19). By employing the orthogonality condition (Grinberg, 1953) here, we

obtain:

Z 1

�1
2Y 0

kY
0
m

 
� d2k
�

þ d2m
�
YkYm

!
dx3 ¼ 0 ðm 6¼ kÞ;

and using the developed equations in the above-mentioned reference procedure, one can obtain Fourier�s
coefficients qkj (k; j ¼ 1; 2; . . .), as follows:

qkj ¼
2rd2k
r þ 1

Z 1

�1
f 00
j ðx3ÞYkðx3Þdx3

Z 1

�1
Y 02

k

��
� d2kYk

�
dx3

	�1
:

Calculating the integrals on the right-hand side of the above equation, we will obtain

qkj ¼ ð�1Þjþ1 4p2j2d2k
ðr þ 1ÞðlkjskÞ2

; lkj ¼ d2k � q2j ; sk ¼ cos dk: ð2:20Þ

Similarly, we can obtain the solutions of the ‘‘standard’’ systems (2.13)–(2.15), as follows:

q�kj ¼ ð�1Þjþ1 2p

ðlkjskÞ2
p2j2

�
� 3r þ 1

r þ 1 d2k

�
; Skj ¼ i 2rqkj

�
þ pjq�

kj

�
; S�

kj ¼ iqkj: ð2:21Þ

Thus, a solvability of the infinite systems of equations (2.12)–(2.15) has been established. The closed-

form solutions are obtained by Eqs. (2.20) and (2.21). Moreover, all the densities in integral representations

(2.4) are expressed through the physical values, namely, through the jumps in the ‘‘displacements’’ on L.
Eq. (2.11) can be significantly simplified by substituting the coefficients from (2.20) and (2.21) into the

above equations and then by summing up some series. As a result, we will obtain:

� p3r
h

ðpk þ p�
kÞ ¼ ekU ð0Þ þ i

X1
j¼1

Skj

j2
U ðjÞ;

� pr
h

pk

�
� p�

k

�
¼ iekV ð0Þ �

X1
j¼1

Skj

j2
V ðjÞ � ipr

h

X1
j¼1

qkj

j
uðjÞ
3

h i
;

ek ¼
2ðr � 1Þp2

ðr þ 1Þd2ks2k
:

ð2:22Þ

Notice that representations (2.4) also remain valid for the second basic problem also, for instance, in the

presence of a rigid insertion in the cut. However, in this case the densities will be expressed via some jumps

in the stress vector on L.

2.1. The integral equations of the boundary value problem (2.6)

The integral representations for stresses rij can be obtained by substituting for functions in relationships

(2.1)–(2.3) from Eq. (2.4) into the above relationships. Expanding the obtained expressions into the

Fourier�s series in the coordinate x3, we will determine the integral representations of Fourier�s coefficients
rðmÞ

ij . Satisfying the boundary conditions (2.6) on one of the shores L and taking Eqs. (2.5), (2.7), (2.11) and
(2.22) into consideration, we will obtain an infinite system of one-dimensional singular integro-differential

equations of the first kind. Because of its awkwardness, the above system is not given here.
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The structure of the system is such that all unknowns are involved in its regular part; the characteristic

part of the system contains exactly three functions buðmÞ
n c, buðmÞ

s c, buðmÞ
3 c for any fixed m ¼ 1; 2; . . . ; and two

functions buð0Þn c and buð0Þ
s c for m ¼ 0.

The jumps in displacements vanish at the vertices of arcs Lj, therefore the above-obtained system should
be considered together with the following additional conditions:Z

Lj

�
U ðmÞ þ iV ðmÞ

�
df ¼ 0;

Z
Lj

d uðmÞ
3

j k
¼ 0; j ¼ 1; 2; . . . ;N ; m ¼ 0; 1; . . . ð2:23Þ

The functions U ðmÞ, V ðmÞ, and dbuðmÞ
3 c=ds are found in the class h0 (Muskhelishvili, 1958).

Consider a characteristic part of the above-mentioned system in a detail. For simplicity, assume that the

contour L represents a segment x2 ¼ 0, �l6 x16 l. Then, we obtain:

for m ¼ 0

Z l

�l

d uð0Þ
2 þ iuð0Þ

1

h i
x � x0

¼ N0ðx0Þ; �l < x0 < l; ð2:24Þ

for m ¼ 1; 2; . . .

Z l

�l

d uðmÞ
2

h i
x � x0

¼ Nmðx0Þ; �l < x0 < l; ð2:25Þ

Z l

�l
yjmðxÞ

dx
x � x0

¼ Njmðx0Þ ðj ¼ 1; 2Þ; ð2:26Þ

where

yjmðxÞ ¼
d

dx
uðmÞ
1

h i
þ am uðmÞ

3

h i
; am ¼ r � 1

2r
cm; y2mðxÞ ¼

d

dx
uðmÞ
3

h i
� cm uðmÞ

1

h i
:

The functions NmðxÞ, NjmðxÞ 2 H ½�1; 1
 are assumed to be known. Eqs. (2.24) and (2.25) are solvable, their
solutions are fixed by additional conditions of the type (2.23). By replacing

x1m ¼ d

dx
uðmÞ
1

h i
; x2m ¼ d

dx
uðmÞ
3

h i
;

the remaining system (2.26) is easily reduced to the standard form (Muskhelishvili, 1958 and Parton and

Perlin, 1973):Z l

�l

x1m dx
x � x0

þ am

Z l

�l
ln

l � x0
x � x0

$$$$
$$$$dx ¼ N1mðx0Þ ðm ¼ 1; 2; . . .Þ;

Z l

�l

x2m dx
x � x0

� cm

Z l

�l
x1m ln

l � x0
x � x0

$$$$
$$$$dx ¼ N2mðx0Þ;

where the kernels in the second terms on the left-hand sides are regular. Thus, the characteristic part of the

obtained system is solvable in the class h0 for any fixed m ¼ 0; 1; . . .

2.2. The stress intensity factors

Introduce parametrization of the contour Lj (from here on, the index j will be dropped) f ¼ fðdÞ,
f0 ¼ fðd0Þ, �16 d, d06 1. Accordingly to that we will set:
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xðmÞ
p ðfÞ ¼

XðmÞ
p ðdÞ

s0ðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ðp ¼ 1; 2; m ¼ 0; 1; . . .Þ; dxðmÞ
3

ds
¼ XðmÞ

3 ðdÞ
s0ðdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ; s0ðdÞ ¼ ds
dd

> 0;

where functions XðmÞ
p ðdÞ 2 H ½�1; 1
 are the solutions of the obtained system of integral equations for the

boundary value problem.
Using the above expressions and the relations connecting the densities in the integral representations

(2.4) with jumps in the displacements, as well as Eqs. (2.1)–(2.3), we will find after a detailed asymptotic

analysis of the integral representations for the stresses the following:

KI � iKII ¼ � lr
r þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

s0ð�1Þ

r X1
m¼0

XðmÞ
1 ð

n
�1Þ � iXðmÞ

2 ð�1Þ
o
cosmpx3;

KIII ¼ � lh
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

s0ð�1Þ

r X1
m¼1

XðmÞ
3 ð�1Þ sinmpx3; KI ¼

ffiffiffiffiffiffiffi
2pr

p
rn; KII ¼

ffiffiffiffiffiffiffi
2pr

p
rns; KIII ¼

ffiffiffiffiffiffiffi
2pr

p
rn3;

where rn, rns, and rn3 are the normal and shear stresses on a plane beyond the crack tip (the upper sign

corresponds to the origin of the crack ‘‘a’’). Thus, the stress intensity factors are naturally expressed
through the functions:

U ¼ d

ds
½unðf; x3Þ
 �

1

q
½usðf; x3Þ
;

d

ds
½u3ðf; x3Þ
;

V ¼ d

ds
½usðf; x3Þ
 þ

1

q
½unðf; x3Þ
; f

�
¼ aj [ bj; x3 2 ½ � 1; 1


�
:

2.3. Some numerical results

For example, consider a layer weakened by a tunnel parabolic cut n1 ¼ p1d, n2 ¼ p2d
2 (�16 d6 1)

subjected to homogeneous stress field hriji on infinity. Some load Xn (n ¼ 1; 2; 3) can be applied on the cut
surface.

In the numerical implementation of the algorithm, the system of integral equations was reduced to the

system of linear algebraic equations by the mechanical quadrature method (see Erdogan et al. (1973)) to the

N�th approximation. In the zero approximation, two integral equations are retained, and correspondingly,

two densities buð0Þ
1 c and buð0Þ

2 c. Analyses were carried out for N� ¼ 0, 1, 2, 3, 4 where the third approximation

did not contribute the results for the values KI and KII in the interval jx3j < 0:85. For the value of KIII faster
convergence in the interval jx3j6 1 was observed.
Let hr22i 6¼ 0, hr11i ¼ hr12i ¼ Xn ¼ 0 (n ¼ 1; 2; 3). The diagrams of the distribution of the relative stress

intensity factor hK1i ¼ KI=ðhr22i
ffiffiffiffiffi
pl

p
Þ are given in Fig. 2 along the thickness coordinate for various p2 and

h=l (2l is the crack length). The top three diagrams refer to a straight crack (p2 ¼ 0Þ and the bottom-to a
parabolic crack (p2 ¼ 0:5). For p2 ¼ 1 these three curves are very close to one another and to the mark

hKIi ¼ 0:2. Here and below, in the analysis, p1 ¼ 1 and m ¼ 0:3 were taken.
Now let hr12i 6¼ 0, hr11i ¼ hr22i ¼ Xn ¼ 0. Notice that in this case, the value hKIIi does not practically

depend on the coordinate x3. The values hKIIi for a straight crack vary in the limits 1.020–1.013 and 1.030–
1.024 for h=l ¼ 2:5 and 1, respectively. For a parabolic crack, the values hKIIi for h=l ¼ 0:5; 1; 2, 5 are
approximately equal. For p2 ¼ 0:5, hKIIi � 0:47–0.48; for p2 ¼ 1, hKIIi ¼ 0:08–0:10. Consider one more case
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when hriji ¼ 0 and the shear forces X3 ¼ X ð1Þ
3 sin px3, X1 ¼ X2 ¼ 0 on the crack surface. The diagrams of the

value hKIIIi ¼ KIIIðX ð1Þ
3

ffiffiffiffiffi
pl

p
Þ�1 are shown in Fig. 3.

3. Bending of a layer with a tunnel crack

Now consider a problem of the bending of a layer. It should be noted that a contact of crack surfaces is

not taken into account here because it is assumed that the layer was subjected to stretching prior to

bending. Thus the contact is lacking in this case. Let the homogeneous field of bending and twisting stresses

hriji takes place on infinity. In order to describe the state of stress and strain of the above layer we will
apply the homogeneous solutions developed by Lur�ye (1942). We will present these solutions in the fol-
lowing complex form:

Fig. 2. Distribution of the relative stress intensity factor hKIi along the thickness coordinate x3 for different h=l.

Fig. 3. Distribution of the relative stress intensity factor hKIIIi along the thickness coordinate x3 for different h=l.
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Biharmonic solutions

u1 � iu2 ¼
o

oz
F1; u3 ¼ �ðr þ 1ÞF � 1

2
h2x23ðr � 1Þr2F þ 2rh2r2F ;

r1 ¼ 2lð3r � 1Þhx3r2F ; r33 ¼ 0; r2 ¼ �4l o2F1
oz2

; r3 ¼ 4lrh2ð1� x23Þ
o

oz
r2F ;

F1 ¼ 2ðr þ 1Þhx3F � h3x33 r

�
þ 1
3

�
r2F ; r2r2F ¼ 0:

ð3:1Þ

Rotational solution

u1 � iu2 ¼ 4irh2
X1
m¼0

sin qmx3
qm

oum

oz
; u3 ¼ 0;

r1 ¼ 0; r2 ¼ �16ilrh2
X1
m¼0

sin qmx3
qm

o2um

oz2
; r33 ¼ 0;

r3 ¼ 4ilrh
X1
m¼0

oum

oz
cos qmx3;

ð3:2Þ

qm ¼ ð2m þ 1Þp=2; r2
�

� c2m
�
um ¼ 0; cm ¼ qm=h:

Potential solution

u1 � iu2 ¼ 2h
o

oz
Re

X1
k¼1

a�
kðx3Þwk; u3 ¼ �Re

X1
k¼1

l�
kðx3Þwk;

r1 ¼
2l
h
Re

X1
k¼1

b�
kðx3Þwk; r2 ¼ �8lh

o2

oz2
Re

X1
k¼1

a�
kðx3Þwk;

r3 ¼ 4lr
o

oz
Re

X1
k¼1

j�
kðx3Þwk; r33 ¼

2lr
h
Re

X1
k¼1

m�kðx3Þwk;

a�
kðx3Þ ¼ rtk

�
þ sk

dk

�
sin dkx3 þ rx3sk cos dkx3;

l�
kðx3Þ ¼ ð1½ þ rÞsk � rdktk
 cos dkx3 þ rdkx3sk sin dkx3;

b�
kðx3Þ ¼ 2ðr � 1Þdksk sin dkx3 þ d2ka

�
k ;

m�kðx3Þ ¼ ðdksk � d2ktkÞ sin dkx3 � x3d
2
ksk cos dkx3;

j�
kðx3Þ ¼ dkðtk cos dkx3 � x3sk sin dkx3Þ;

tk ¼ sin dk; sk ¼ cos dk; ðr2 � k2kÞwk ¼ 0; kk ¼ dk=h:

ð3:3Þ

Here, dk are roots of the equation sin 2dk � 2dk ¼ 0 lying in the first quadrant of the complex d-plane.
The integral representations of the functions in the relationships (3.1)–(3.3) must ensure the existence of

displacement jumps and continuity of the stress vector in the transition through the cuts Lj (j ¼ 1; 2; . . . ;N )
as well as, the decay of displacements and stresses on infinity. The integral representations may be written

as following:

F ðzÞ ¼ Re

Z
L

pðfÞ oG
of

�
þ p�ðfÞ o

of
r2G

�
df þ

Z
L
qðfÞr2Gds þ

Z
L
q�ðfÞGds;
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umðzÞ ¼
Z

L
q�

mðfÞK0ðcmrÞds þ 2Re
Z

L
rmðfÞ

o

of
K0ðcmrÞdf; ð3:4Þ

wkðzÞ ¼
Z

L
pkðfÞ

o

of
K0ðkkrÞdf

�
þ p�kðfÞ

o

o�ff
K0ðkkrÞd�ff

�
þ
Z

L
q�

kK0ðkkrÞds;

G ¼ r2 ln r; L ¼
[N
j¼1

Lj; f � z ¼ reia; Imq�
m ¼ 0; ImqðfÞ ¼ Imq�ðfÞ ¼ 0:

Here the functions pðfÞ ¼ fpjðfÞ; f 2 Ljg; . . . ; rmðfÞ ¼ frmjðfÞ; f 2 Ljg are to be determined from the

boundary conditions on the surface of the non-homogeneity.

As before, we expand all odd components of the displacement vector and stress tensor, as well as ex-

ternal loading in Fourier�s series of the type u ¼
P

uðmÞ sin qmx3 and all the even components- in the series of
the type v ¼

P
vðmÞ cos qmx3. In determining the Fourier�s coefficients rðmÞ

ij of the components of the stress

tensor rij by functions (3.4), the singularities of the type ðf � zÞ�3 occur in the kernels of the corresponding
integral representations. In order to eliminate them, we introduce some relations between the densities

appearing in the representations (3.4).

D�
mp

� � e�mp � iq
�
m

2
rm ¼ h

X1
k¼1

aðmÞ
k pkðfÞ

�
þ �aaðmÞ

k p�
kðfÞ

�
; ð3:5Þ

where

D�
m ¼ 2ðr þ 1ÞhDm; Dm ¼ 2ð�1Þm

q2m
; e�m ¼ h3 r

�
þ 1
3

�
em;

em ¼ 6ð�1Þm

q2m
1

�
� 2

q2m

�
; q�

m ¼ 4rh2

qm
;

aðmÞ
k are Fourier�s coefficients of the function a�

kðx3Þ in the orthogonal system fsin cmx3g.
The boundary conditions on L have a form (2.6) for m ¼ 0; 1; 2; . . . The continuity conditions of the

stress vector in the transition through the cut and the requirement of the existence of a jump in the dis-

placement vector on L result in the following relationships:

q�m ¼ qm

4prh2
uðmÞ
1

h i
sinw

�
� uðmÞ

2

h i
cosw

�
;

rm ¼ 1

4prh
uðmÞ
3

h i
þ i

2prqm
V ðmÞ; V ðmÞ ¼ e�iw

d

ds
uðmÞ
1

h i�
þ i uðmÞ2

h i�
;

ð3:6Þ

D�
mRep

� � e�mRep � hRe
P1
k¼1

aðmÞ
k ðpk þ p�

kÞ ¼ � h2

pq2m

d

ds
uðmÞ
1

h i
cosw þ d

ds
uðmÞ
2

h i
sinw

� �
;

k��
m Rep � rRe

P1
k¼1

jðmÞ
k pk þ p�

k

� �
¼ � h

2pqm

d

ds
uðmÞ
1

h i
cosw þ d

ds
uðmÞ
2

h i
sinw

� �
;

8>>><
>>>:

ð3:7Þ

�D�
mReq þ e�mq

� þ hRe
P1
k¼1

aðmÞ
k q�

k ¼
1

4p
uðmÞ
1

h i
cosw þ uðmÞ

2

h i
sinw

� �
;

�k��
m q� þ rRe

P1
k¼1

jðmÞ
k q�

k ¼ 0;

8>><
>>:

ð3:8Þ
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D�
mImp� � e�mImp � hIm

P1
k¼1

aðmÞ
k pk � p�

k

� �
¼ h
2pqm

uðmÞ
3

h i
þ h2

pq2m

d

ds
uðmÞ
1

h i
sinw � d

ds
uðmÞ
2

h i
cosw

� �
;

DmImp � 2rqm

h
Im

X1
k¼1

jðmÞ
k pk � p�

k

� �
¼ 1

p
d

ds
uðmÞ
1

h i
sinw � d

ds
uðmÞ
2

h i
cosw

� �
;

8>>><
>>>:

ð3:9Þ

k��
m ¼ 2rh2 k�

m

�
� Km

�
; k�

m ¼ 2 �1ð Þm

qm
; Km ¼ 2ð�1Þm 1

qm

�
� 2

q3m

�
;

K�
m ¼ 2d��

m þ D�
m; d��

m ¼ 3rð � 1ÞhDm:

Here uðmÞi (i ¼ 1; 3) are the Fourier�s coefficients in the displacement vector ui (i ¼ 1; 3).
Thus, the densities q�

m and rm are directly expressed via the jumps in the displacements on the cuts. The
remaining densities are connected with the jumps by means of the three pairs of the infinite systems of linear
algebraic equations (3.7)–(3.9). Isolating the terms corresponding to the value m ¼ 0 in relationships (3.7)–

(3.9), one can find the unknown densities, as follows:

q� ¼ �lU ð0Þ þ
X1
j¼1

ljU ðjÞ; q ¼ �l�U ð0Þ þ
X1
j¼1

l�jU
ðjÞ;

p ¼ il1 uð0Þ
3

h i
� l2V ð0Þ � i

X1
j¼1

lðjÞ11 uðjÞ
3

h i
þ
X1
j¼1

lðjÞ12V
ðjÞ;

p� ¼ il�1 uð0Þ
3

h i
� l�2V

ð0Þ � i
X1
j¼1

lðjÞ21 uðjÞ
3

h i
þ
X1
j¼1

lðjÞ22V
ðjÞ;

pk ¼ l1k uð0Þ
3

h i
� l2kV ð0Þ �

X1
j¼1

lðjÞ1k uðjÞ
3

h i
þ
X1
j¼1

lðjÞ2k V
ðjÞ; ð3:10Þ

p�k ¼ �l1k uð0Þ
3

h i
� l2kV

ð0Þ þ
X1
j¼1

lðjÞ1k uðjÞ
3

h i
þ
X1
j¼1

lðjÞ2k V
ðjÞ
;

p�
k ¼ �l1k uð0Þ

3

h i
� l2kV

ð0Þ þ
X1
j¼1

lðjÞ1k uðjÞ
3

h i
þ
X1
j¼1

lðjÞ2k V
ðjÞ
;

q�
k ¼ �l�kU

ð0Þ þ
X1
j¼1

l�ðjÞk U ðjÞ;

where U ðmÞ ¼ ½uðmÞ
1 
 cosw þ ½uðmÞ

2 
 sinw, ½u
 ¼ uþðfÞ � u�ðfÞ, f 2 Lj.

The expressions for the coefficients for the displacement jumps are not given here because of their

awkwardness. These coefficients are expressed through the values qkj and q�
kj, which are the solutions of the

following ‘‘standard’’ systems:

Re
P1
k¼1

aðiÞ
k q�

kj ¼ dij;

Re
P1
k¼1

jðiÞ
k q�

kj ¼ 0;

8>><
>>:

Re
P1
k¼1

aðiÞ
k qkj ¼ 0;

Re
P1
k¼1

jðiÞ
k qkj ¼ dij;

8>><
>>:

ð3:11Þ
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where dij (i; j ¼ 1; 2) is the Kronecker�s symbol. Thus, unknown densities are directly expressed via the
displacement jumps. The solvability of the infinite system of equations of the type (3.10) was proven in

Section 2.

3.1. The integral equations of the boundary volume problem

The integral representations for the stresses rij can be obtained by substituting for the functions from

(3.4) into relationships (3.4). Expanding the obtained expressions into Fourier�s series in the x3-coordinate,
one can determine the integral representations of the Fourier�s coefficients rðmÞ

ij . Then, satisfying boundary

conditions (2.6) on one of the shores L and taking Eqs. (3.5) and (3.6) into account yields an infinite system
of one-dimensional singular integro-differential equations of the first kind. The above system is not given
here because of its awkwardness. The system has been constructed in such a way that all the unknowns ‘‘are

linked’’ in its regular part; the characteristic part of the system involves exactly three functions buðmÞ
1 c, buðmÞ

2 c,
and buðmÞ

3 c for any fixed value m ¼ 0; 1; 2; . . .
The displacement jumps at the vertices of arcs Lj vanish; therefore it is necessary to consider the obtained

system of equations together with the following additional conditions:Z
Lj

d uðmÞ
i

h i
¼ 0 ðj ¼ 1; 2; . . . ;N ; i ¼ 1; 3; m ¼ 0; 1; . . .Þ; ð3:12Þ

and to seek the functions dbuðmÞi c=ds in the class h0 (Muskhelishvili, 1958). The solvability of the charac-
teristic part of the obtained system is established similarly to that of Section 2.

3.2. The coefficients of stress intensity

Let us introduce the parameterization of the contour Lj (below the index j will again be omitted)
f ¼ fðdÞ, f0 ¼ f0ðdÞ, �16 d, d06 1 similarly to that of Section 2. Corresponding to that, we will set:

xðmÞ
p ðfÞ ¼

XðmÞ
p ðdÞ

s0ðdÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ðp ¼ 1; 2; m ¼ 0; 1; . . .Þ;

dxðmÞ
3

ds
¼ XðmÞ

3 ðdÞ
s0ðdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p ; s0ðdÞ ¼ ds
dd

> 0;

where the function XðmÞ
p ðdÞ 2 H ½�1; 1
.

Using the above expressions, the relationships (3.6) and (3.9) connecting the densities in the integral
representations (3.4) with the displacement jumps and Eqs. (3.1)–(3.3), we will find by the asymptotic

analysis the following integral representations for the stresses:

KI � iKII ¼ � lr
r þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

s0ð�1Þ

r X1
m¼0

XðmÞ
1 ð

n
�1Þ � iXðmÞ

2 ð�1Þ
o
sin qmx3;

KIII ¼ � l
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

s0ð�1Þ

r X1
m¼0

XðmÞ
3 ð�1Þ cos qmx3; qm ¼ 2m þ 1

2h
p;

KI ¼
ffiffiffiffiffiffiffi
2pr

p
rn; KII ¼

ffiffiffiffiffiffiffi
2pr

p
rns; KIII ¼

ffiffiffiffiffiffiffi
2pr

p
rn3;

where rn, rns and rn3 are the normal and shear stresses on a plane beyond the crack tip; the upper sign refers
to the beginning of the crack a.

6398 L.A. Fil’shtinskii et al. / International Journal of Solids and Structures 39 (2002) 6385–6402



3.3. Some numerical results

As an example, let us consider a layer weakened by a tunnel parabolic cut n1 ¼ p1d, n2 ¼ p2d
2

(�16 d6 1) is subjected to a homogeneous field of bending stresses hriji applied on infinity. It is assumed
that some bending load Xnðf; x3Þ (n ¼ 1; 2; 3) can be applied on the cut surface.
In the numerical implementation of the algorithm, the system of integral equations was reduced to a

system of linear algebraic equations by the method of mechanical quadratures (Erdogan et al., 1973) and

was then solved by the reduction method. Approximation with the number N� refers to retaining 3ðN� þ 1Þ
real equations in the system and correspondingly 3ðN� þ 1Þ unknowns buðmÞ

1 c, buðmÞ
2 c, and buðmÞ

3 c (m ¼
0; 1; 2; . . . ;N�). At a zero approximation, the three integral equations were retained and, correspondingly,

so were the three densities buð0Þ
1 c, buð0Þ

2 c, and buð0Þ
3 c. The calculations were carried out for N� ¼ 0, 1, 2, 3, 4,

where the third approximation did not correct the results in the interval jx3j6 1.
Let the load hr22i ¼ Px3, P ¼ const acts on an infinity. The surfaces of the cavity-cut are free of any

forces. The diagrams of distribution of the relative stress coefficient factor hK1i ¼ K1=ðP
ffiffiffiffiffi
pl

p
Þ over the

‘‘thickness’’ coordinate are shown in Fig. 4. The curves 1, 2, 3, and 4 were constructed for a straight crack

(p1 ¼ 1, p2 ¼ 0:5) for h=l ¼ 0:5; 1; 2; and 4 respectively, where 2l is the crack length. Points on the above
figure refer to results given in Sundara Raja Iyengar et al. (1988) and were obtained by the FEM. It should

be noted that the results of the given investigation agree well with those of Sundara Raja Iyengar et al.

(1988). The straight line in Fig. 4 correspond to results of Murthy et al. (1981) obtained with the use of the

Reissner�s theory for h=l ¼ 1 .
Let the load X1 ¼ Px3 cosw, X2 ¼ Px3 sinw, X3 ¼ 0, P ¼ const, and hriji ¼ 0 be applied on the surface of

the cavity-cut. The corresponding diagrams of the distribution of the relative stress intensity factor hK1i
over the ‘‘thickness’’ coordinate are given in Fig. 5. The curves 1, 2, 3, and 4 refer to a parabolic crack

(p1 ¼ 1 and p2 ¼ 0:5) for h=l ¼ 0:5; 1; 2; and 4, respectively.
Consider a case when a load X1 ¼ X2 ¼ 0, X3 ¼ P acts on the surface of the cavity of the cut. The di-

agrams of the distribution of the relative stress concentration factor hKIIIi ¼ KIII=ðP
ffiffiffiffiffi
pl

p
Þ over the

Fig. 4. Distribution of the relative stress intensity factor hKIi for a rectilinear crack in bending.
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‘‘thickness’’ coordinate are given in Figs. 6 and 7. The curves 1, 2, 3, and 4 (Fig. 6) were given for a straight

crack (p1 ¼ 1 and p2 ¼ 0) for h=l ¼ 0:5; 1; 2; and 4, respectively. The curves 1, 2, 3, and 4 in Fig. 7 were
given for a parabolic crack (p1 ¼ 1 and p2 ¼ 0:5) for h=l ¼ 0:5; 1; 2; and 4, respectively.
All the numerical results were obtained for the value of Poisson�s ratio m ¼ 0:3.

Fig. 5. Distribution of the relative stress intensity factor hKIi for a parabolic crack in bending.

Fig. 6. Distribution of the relative stress intensity factor hKIIIi along the thickness coordinate x3 for a rectilinear crack.
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4. Conclusion

A novel method has been developed and demonstrated for the stress analysis of the boundary value
problem of elastic layer weakened by through-thickness flaws. Several conclusions may be drawn about this

method:

(1) The use of homogeneous solutions reduces a three-dimensional boundary value problem for a layer to a

denumerable set of two-dimensional boundary value problems for metaharmonic functions.

(2) This approach enables an efficient solution of the problem of the correspondence of boundary condi-

tions for the stress vector on the flaw surface to boundary conditions for each metaharmonic function.

(3) By virtue of rapid convergence of the developed algorithms, it is sufficient to reduce the infinite system
of one-dimensional integral equations to a finite system with a quite small number of equations. The

latter practically decreases the problem dimensionality by two units. In this sense, the new approach

differs favorably from such well-known methods as the FEM and boundary element method.

(4) The disadvantages of this procedure lie in the awkwardness of analytical techniques used to obtain the

system of one-dimensional integral equations.
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